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The vortices near the origin of an initially laminar mixing layer have a single 
frequency with a well-defined phase; i.e. there is little phase jitter. Further 
downstream, however, the phase jitter increases suddenly. Even when the flow is 
forced, this same transition is observed. The forcing partially loses its influence 
because of the decorrelation of the phase between the forcing signal and the passing 
coherent structures. In the present investigation, this phenomenon is documented 
and the physical mechanism responsible for the phase decorrelation is identified. 

1. Introduction 
The study of the mixing process of two fluids in a shear layer has been a major 

effort in turbulence research for decades. The concept of coherent structures 
proposed in the early 1970s (Crow & Champagne 1971; Brown & Roshko 1974; 
Winant & Browand 1974) changed the trend of the investigation. Since then, it has 
become clear that the evolution of the large vortical structures dominates the mass 
and momentum transfer across the two streams. These vortices have been identified 
as being quasi-periodic in the developed region of the mixing layer (Ho & Huerre 
1984). In an unforced, laminar mixing layer or in a, forced flow the initial vortices 
form in a periodic manner. The transition process from periodic to quasi-periodic flow 
was unknown and is studied here. 

In the 1980s, several experiments showed that the entrainment of mass could be 
altered by manipulating the coherent structures. The spreading of the shear layer can 
be controlled either actively by applying periodic disturbances (Ho & Huang 1982 ; 
Oster & Wygnanski 1982 ; Lee & Reynolds 1985) or passively by modifying the initial 
geometry (Ho & Gutmark 1987). For cases where periodic perturbations are used to 
control the plane mixing layer, there exists a zone of influence, the extent of which 
depends on the velocity ratio and the hydrodynamic wavelength of the perturbation 
(Ho & Huerre 1984). Within this zone, the vortex merging pattern is phase locked to 
the control signal and the spreading rate is greatly changed. Beyond this region, 
however, the phase between the vortices and the forcing is no longer locked, and the 
forcing partially loses its influence. So, for improving control techniques, it is 
important to understand the physical mechanism of this phenomenon. 

In this paper, an experimental study is presented to quantify the phenomenon of 
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phase jitter, to determine its downstream evolution as well as its dependence on the 
transverse and spanwise directions, and finally to identify the physical mechanism 
responsible for the phase decorrelation. 

2. Apparatus and procedures 
2.1. Wind tunnel 

The experiments are conducted in an open-loop wind tunnel. Air is drawn through 
the tunnel by a blower providing suction downstream of the test section. A 3 x 3 m 
stilling chamber is separated into two independent sections by a 10 cm thick splitter 
plate. Four turbulence damping screens span the entire stilling chamber, while the 
splitter plate is constructed in sections and carefully sealed against each screen. The 
plate tapers uniformly through the contraction section a t  an angle of 2" on the low- 
speed side only. At the end of the contraction section, a steel plate is attached to the 
end of the splitter plate and terminates with an edge thickness of about 0.5 mm. The 
splitter plate divides the test section into two streams, each 30.5 cm deep and 
91.4 cm wide. To obtain different velocity ratios between the upper and the lower 
streams, a series of cloth meshes placed over the upper half of the entrance to the 
stilling chamber produces an additional pressure drop and consequently a velocity 
difference at the plate trailing edge. A probe drive mechanism is housed in a large 
Plexiglas compartment resting on the roof of the tunnel. Probes are mounted on a 
vertical positioning drive and are introduced through an opening in the tunnel roof 
into the low-speed stream. 

2.2. Acoustic excitation 
Acoustic waves are generated to  force the mixing layer. A row of 17 speakers spans 
the tunnel ceiling directly above the trailing edge of the splitter plate. The speakers 
are housed in a Plexiglas box lined with foam to damp any acoustic reflections. Each 
speaker input is individually amplified, and connects in parallel to a common source. 
The driving signal is provided by an electronic device, which can generate a sine wave 
of a given frequency and its subharmonics. The flow may be perturbed by any 
combination of the fundamental and its first and second subharmonics, where each 
amplitude and phase shift can be controlled. The acoustic field generated by this 
array of speakers is uniform across the span to within 5dB, as measured by a 
microphone at the trailing edge, while the average intensity level is about 80 dB. 

2.3. Instruments and signal processing 
A single hot wire is used to measure the mean and fluctuating longitudinal velocity. 
The wire is made of 10 % rhodium platinum and is 0.0025 mm in diameter, while the 
wire length varied from 1 to 1.5 mm. The constant-temperature hot-wire anemometer 
has a flat frequency response up to 30 KHz. The wire output voltage is calibrated 
using a Pitot tube to measure the corresponding velocity. The analogue output is 
digitized by a PDP 11/23 micro-computer at  a rate higher than 100 times the passage 
frequency of the local large-scale structures. The fast-Fourier-transform (FFT) 
technique is used to compute the frequency spectra of the streamwise velocity. A 
time history of about 2000 structures is recorded at each station, and the mean value 
is then subtracted from the signal. This enables the detection of positively sloped 
zero crossings of the fluctuating component of the streamwise velocity. Subsequently, 
the period of each passing large-scale eddy is computed, and the periods of the entire 
population are used to construct a histogram. One or two lognormal distributions are 
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fitted to the measured histogram, where both the mean value and the standard 
deviation are determined using a least-squares method. 

3. Mean flow quantities 
3.1. Initial conditions 

All experiments are conducted with laminar boundary layers on both sides of the 
splitter-plate trailing edge. Evidence for the state of the boundary layers at 
separation is obtained from traverses across the flow at x = 0.25 mm downstream of 
the plate trailing edge. Figure l (a )  compares the Blasius profile with the mean 
velocity distributions on both sides of the plate for the highest speed used for each 
stream. Frequency spectra of the streamwise velocity fluctuations inside both 
boundary layers at the trailing edge, plotted in figure 1 (b), show that initially there 
exists wide-band background noise with no preferred frequency. The free-stream flow 
is uniform across the span to within 0.35% of the maximum velocity in either 
stream. The free-stream turbulent intensity level in the vicinity of the trailing edge 
is approximately 0.3% of the free stream. 

3.2. Mean velocity projiles 
The growth of the mixing layer is determined from the streamwise mean velocity 
distributions. The profiles measured at the midspan of the test section (z = 0) for 
free-stream velocities of U, = 3.85 m/s and U, = 21.65 m/s are shown in figure 2, 
where the velocity ratio is R = (U2- U,) / (U,+  U,)  = 0.7. Close to the trailing edge 
the velocity profiles exhibit a wake-like defect. This is a result of the boundary layers 
on both sides of the splitter plate, which contain vorticity of opposite sign. Zhang, 
Ho BE Monkewitz (1985) investigated the effects of the splitter-plate wake on the 
stability characteristics of the shear layer. They found that the instability process is 
dominated by the vorticity on the high-speed side with no substantial influence from 
the wake. Indeed, a short distance from the trailing edge the velocity defect 
disappears, and the profiles become monotonically varying. Further downstream the 
velocity distributions relax to a self-similar profile. 

The initial lengthscale is the vorticity thickness, 6, w 2 mm, based on the velocity 
profile a t  the trailing edge, as proposed by Zhang et al. (1985). The initial Reynolds 
number, based on the mean speed 0 = t(Ul + U,) = 12.75 m/s, is then Re = 08,Jv = 
1700. The measured initial instability frequency is fo = 880 Hz, so that the initial 
Strouhal number based on the vorticity thickness is St, = f ,S , /U  = 0.138, close to 
the value of 0.136 predicted by Monkewitz & Huerre (1982) for R = 0.7. 

3.3. Spreading of the mixing layer 
The momentum thickness can be obtained from the velocity distributions as follows : 

but only for those streamwise stations where the mean velocity profiles vary 
monotonically. However, the vorticity thickness, defined as 

can be obtained for all streamwise stations, and is approximately four times that of 
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FIGURE 2. Mean velocity profiles for R = 0.7 at various X * :  (a) 0.56, (b)  1.1, (c) 2.2, ( d )  4.5, 
(e) 6.7, ( f )  13.4. 

the momentum thickness for laminar flow. Thus, for stations close to the splitter- 
plate trailing edge, where a wake-like velocity defect still exists, the momentum 
thickness was estimated as 8 x $3. The results for two velocity ratios, R = 0.7 and 
0.4, are shown in figure 3. 
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FIGURE 3. Downstream evolution of the momentum thickness for: A, R = 0.4; 0, R = 0.7. 

The streamwise coordinate is normalized as X* = Rx/A,, where A, is the initial 
instability wavelength, A, = U / f 0 .  Based on this normalization, the first and second 
time-averaged vortex merging regions are at around X * = 4 and 8, respectively (Ho 
& Huerre 1984 ; Huang & Ho 1990). The cross-stream coordinate is normalized by the 
local momentum thickness, Y * = y / e ( x ) .  

4. The phenomenon of phase decorrelation 
4.1. Passage of coherent structures in a natural mixing layer 

The convecting vortical structures induce potential velocity fluctuations outside the 
shear region. The hot wire positioned in this potential region senses the passage of the 
structures at  a given streamwise location. Figure 4 shows hot-wire traces at six 
streamwise stations of a mixing layer with no artificial forcing. Here, the long-time 
average of the streamwise velocity, U,  is subtracted from the total streamwise 
velocity component, u, to yield the fluctuating part, u'. The time records are four 
times the local average period, T ( x ) ,  of the passing coherent structures, where the 
period T is the time interval between successive zero crossings with positive slopes. 
Close to the splitter-plate trailing edge, the signal is very well organized; i.e. the 
period of the passing coherent structures is nearly constant even in a natural shear 
layer. A short distance further downstream the periods start to fluctuate and 
become increasingly random. 

Takaki & Kovasznay (1978) studied the probability distribution of large-scale 
vortex spacing in the fully turbulent region of the mixing layer. They derived a 
conservation equation for the distribution of spacings, in which the merging process 
results in the formation and destruction of these spacings. Their formulation 
included only amalgamations by pairing. The r.m.s. deviation of the probability 
distribution was found to be 0.39 times the average spacing. Following their lead, 
Bernal (1988) proposed a statistical theory of vortex circulation to describe the self- 
similar probability distribution from the vortex evolution properties. The model 
allows mergings not only by pairing, but also by tripling, etc. He suggested a 
lognormal distribution for the vortex spacings normalized by their streamwise 
location. His conclusion was that coalescence by pairing is the dominant form of 
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interaction, and the presence of other forms, such as tripling, increases the value of 
the standard deviation. 

In this work, therefore, a lognormal distribution was also chosen to fit the data at 
all measured stations, 

FIGURE 4. Traces of streamwise velocity fluctuations in time for Y = 4 and R = 0.7 at various 

(3) 

where the standard deviation, u, and the mean value of In (7),  ,u, are calculated using 
the method of least squares to fit the experimental data. Here, the period of each 
coherent structure, T, is normalized by the local average period, T(z) ,  to yield a non- 
dimensional period, 7 ,  and P(7) is the probability density function. The histograms 
are normalized so that the area below the curve is unity, since by definition 
J_’”P(7)d7 = 1. When the data clearly show two peaks, the sum of two lognormal 
di&ibutions is used and four parameters are calculated to fit the data. These 
histograms will be further explored for their dependence on the transverse, the 
spanwise and the streamwise directions. 

4.2. Dependence in the transverse direction 
The turbulent-non- turbulent boundary is a convoluted time-varying surface. If the 
hot wire is placed too close to the shear-layer centre, the zero-crossing histogram will 
be contaminated by the small eddies in the turbulent zone. If the probe is located too 
far into either free stream, the level of the induced velocity will be close to the 
background noise. Therefore, one has to examine the variation of the histograms in 
the transverse direction. The measured histograms along with the fitted distributions, 
at two downstream stations, X* = 1 and 7, are shown in figure 5.  Several cross- 
stream locations are plotted for each station. At the upstream station, X* = 1, the 
histogram is very narrow with a sharp peak, whereas for the downstream station, 
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FIQURE 5. Coherent-structure histograms for R = 0.4 at various Y * :  (a) 4, (b)  6, ( c )  8, (d) 10. 
(i) X *  = 1 ;  (ii) X* = 7. 0,  Experiment; -, lognormal fit (equation (3)). 
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FIQURE 6. Transverse variations of the standard deviation at various X * :  (a) 2, (b )  4, ( c )  6, 

(d) 8, (e) 12. 0,  R = 0.4; A, R = 0.7. 

X* = 7, the distribution becomes broad and the peak is very shallow. Nevertheless, a t  
both stations the distributions are nearly identical as the distance from the mixing- 
layer centre increases from Y* = 4 to 10. The sharpness or broadness of these 
distributions can be represented by the magnitude of the standard deviation. The 
standard deviation is a quantitative measure characterizing the level of phase jitter 
at  each station along the mixing layer. The standard deviation as a function of the 
transverse distance is plotted in figure 6 at  five downstream locations for low and 
high velocity ratios, R = 0.4 and 0.7. A t  the two upstream stations, the standard 
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FIGURE 7. Spanwise velocity profiles for R = 0.45 and Y* = 5 at: (a) X *  = 5, ( b )  X *  = 8. 

deviation was obtained for wider range, Y *  = 2 to 12. Indeed, for small transverse 
locations, Y * < 4, and large transverse locations, Y * > 10, the phase jitter is larger 
since the zero crossing is affected by either the small turbulent eddies or the 
background noise. In the middle portion of the profile, the standard deviation is 
smaller and almost constant. This is because the recorded velocity signal in the 
intermediate region, in either the low- or high-speed side, corresponds primarily to 
the passing coherent structures. Consequently, their duration is independent of the 
cross-stream distance. 

4.3. Dependence in the spanwise direction 
The streamwise streaks in a mixing layer (Konrad 1976) are counter-rotating 
vortices (Bernal & Roshko 1986) which are stationary in the wind tunnel (Jimenez, 
Cogollos & Bernal 1985; Huang & Ho 1990). These localized vortices induce fluid 
from both the low- and the high-speed sides to cross the shear layer. Therefore, they 
result in a non-uniform spanwise distribution of the mean streamwise velocity, as 
shown in figure 7. 

In order to check the dependence of the phase jitter in the spanwise direction, 
experiments were conducted with the probe located at  several spanwise stations : at 
the cores of the vortices, the maximum and minimum velocity positions as well as 
points in between. The standard deviations of the phase jitter at  X* = 2 and 8 are 
shown in figure 8. The values are constant in the span for both the upstream and the 
downstream locations ; thus the time-averaged phase-jitter levels are not influenced 
by the presence of the streamwise vortices. 

4.4. Dependence in the streamwke direction 
While the distribution of the normalized periods does not vary in the transverse and 
the spanwise directions, it does vary dramatically in the streamwise direction. Figure 
9 shows the measured histograms with the fitted lognormal distributions at eight 
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FIGURE 9. Unforced coherent-structure histograms for R = 0.5 and Y* = 0.5 at various X * :  (a) 2, 
(a) 2.5, (c) 3, (d )  3.5, (e) 4, (f) 4.5, (8)  5, (h)  10. 0,  Experiment; -, lognormal fit (equation (3)). 

streamwise stations for R = 0.7 and Y* = 5. The distributions have a single peak and 
are very sharp in the initial region of the flow, 0.5 < X* < 3, where the roll-up and 
the formation process of the coherent structures take place (Ho & Huerre 1984). This 
indicates little phase jitter, since most of the periods have the same value. A t  X* = 
3, where the structures start to rotate around each other, the peak level of the 
histogram decreases sharply, and a second hump starts to develop at a period twice 
as long as the peak period. This type of histogram corresponds to the initial stage of 
the vortex merging process. Further downstream, at X* = 3.5, the merging process 
is in progress resulting in a double-peaked distribution of almost the same 
probability, corresponding to the paired and unpaired structures. A t  X * = 4, where 
the process is almost complete, the subharmonic mode takes over, leading to a shifted 
peak towards longer periods, though remnants of the fundamental mode still exist. 
At X * = 5, the first vortex merging is complete and the distribution features a single 
peak once again, but its peak level is much lower in comparison with that in the 
initial region of the shear layer. Further downstream, X* > 5 ,  the histograms settle 
to a self-similar shape, where the most probable period increases continuously with 
the streamwise distance, reflecting the continuous decrease of the passage frequency 
as reported in previous investigations. 

The larger width of the histogram at downstream stations indicates an increase in 
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FIQURE 10. Downstream evolution of the standard deviation at Y * = 5 for : 
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FIQURE 11. Forced coherent-structure histograms, fo, for R = 0.5 and Y* = 5 at various X*: (a) 2, 
( b )  2.5, (c) 3, (d) 3.5, (e) 4, (f) 4.5, (8) 5, (h)  10. 0 ,  Experiment; -, lognormal fit (equation (3)). 

the phase jitter of the coherent structures as is also shown in figure 4. The 
quantitative measure of this phase jitter, the standard deviation of the lognormal 
distribution, is plotted in figure 10 as a function of the downstream distance. The 
data points for a wide range of velocity ratios, 0.45 < R < 0.8, all collapse onto one 
curve when the streamwise coordinate is normalized by R/h,  (Huang & Ho 1990). 
Close to the splitter plate, X* < 3, the standard deviation is almost constant and 
small, about 0.08, corresponding to a low level of phase jitter. Then, in a short 
interval, 3 < X* < 4, the standard deviation more than quadruples. The abrupt 
increase in the phase jitter indicates that the phase information is lost downstream 
from this short region. This phenomenon is referred to as phase decorrelation. Once 
the phase information is lost, around the first vortex merging location, the standard 
deviation settles back to a constant value, about 0.38, which is much higher 
compared with the initial region. This suggests the existence of a self-similar region 
for the probability distributions, since the periods are normalized by the local mean 
period. 

4.5. Forcing effects 
The application of periodic excitation to a shear layer is commonly used to force the 
formation of the coherent structures at a more regular period than in a natural flow. 
In  a forced case, a clearly defined phase reference is indeed obtained. Based on this 
phase reference, a phme-averaging technique can then be applied in various data 
analysis techniques. So now the phase decorrelation is examined in a forced flow. 

Figure 11 shows the results for the case when the flow is forced at the fundamental 
frequency and all other parameters are identical to the naturally evolving case 
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FIGURE 12. Standard-deviation evolution for R = 0.5: 
A, natural; 0,  forced at fo; x , numerical. 

presented in figure 9. The histograms of the artificially forced mixing layer in the first 
stage, X* < 3, are much sharper than those of the natural case. This is the result of 
the phase-locked large-scale structures which have a constant period. When the 
mixing layer is forced at the fundamental frequency (mode I in the experiment of Ho 
& Huang 1982), the vortex merging is delayed. This is evident from the location of 
the subharmonic hump. In the natural case (figure 9) it appears at X* = 3, whereas 
in the forced case (figure 11) it appears further downstream at X* = 3.5. Later on, 
the evolution of the phase jitter follows that of the natural case. As the first merging 
process takes place, the distribution becomes broader with a lower peak. Figure 12 
shows the standard deviation as a function of the normalized downstream distance 
for the artificially excited and the natural mixing layer. Indeed, the standard 
deviation of the forced case in the initial region, about 0.05, is smaller than that of 
the natural case, about 0.08. Hence, applying forcing at the fundamental frequency 
of the mixing layer decreases the phase jitter significantly. Once the process of vortex 
merging is in progress, 3 < X * < 4, the standard deviations for the forced flow are in 
general lower than those for the natural case. However, their values increase greatly 
with the streamwise distance, so that the fundamental forcing is no longer effective 
in controlling the phase. Thus, phase decorrelation also occurs in a mixing layer 
forced at the fundamental frequency, and it occurs in the same streamwise region as 
for the natural flow. This finding suggests that even when a clear phase reference is 
artificially imposed upon the mixing layer, the phase information is still lost. For 
X * > 4, the standard deviation reaches the same value as that in the unforced case, 
about 0.38, suggesting that there exists an asymptotic state for the phase jitter 
which is the same for forced and unforced case. 

5. The origin of the phase decorrelation 
There are several possible causes for this abrupt loss of the phase reference. Phase 

decorreletion could be a result of either a two- or a three-dimensional phenomenon. 
One possible scenario involves three-dimensional mechanisms such as the small-scale 
transition (Huang & Ho 1983) or the dislocation of spanwise structures (Browand & 
Troutt 1980). The fine eddies, which appear in the flow after the small-scale 
transition, can alter the vorticity distribution of the spanwise structures which in 
turn will modify the distance between vortex mergings (Pierrehumbert t Widnall 
1982). In  other words, the vortex-merging distance varies due to the random fine 
eddies and therefore can cause phase jitter of the coherent structures. The dislocation 
of vortices is a local deformation or pairing of vortices in the spanwise direction. 
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When a hot-wire probe measures the passing structures, the time trace will also show 
phase jitter. A second scenario is that the phase decorrelation may also be generated 
by two-dimensional mechanisms such as subharmonic instability or phase tur- 
bulence. The phase decorrelation is similar to the onset of phase turbulence 
encountered in a class of motions in which the loss of periodicity can be ascribed 
primarily to chaotic behaviour in the phase of the waves. The self-generated loss of 
phase reference, inherent in the dynamics of large-scale structures, will result in a 
broadband spectrum in the low-frequency range. Huerre (1987) proposed an 
amplitude evolution model to describe the development of instability waves in 
parallel free shear flows. His model shows that an array of spatially periodic coherent 
structures exhibits an Eckhaus-like instability dominated by two-dimensional 
disturbances. On the other hand, subharmonic instability appears when the 
subharmonic overtakes the fundamental as the most amplified mode (Kelly 1967), 
which results in the pairing of neighbouring coherent structures (Winant & Browand 
1974). Monkewitz (1988) studied the spatial evolution of the fundamental mode and 
its subharmonic in a mixing layer. He found that after the initial exponential growth 
of the subharmonic, a resonant interaction between the two modes sets in the layer, 
resulting in a higher growth rate of the subharmonic. This nonlinear interaction leads 
to the excitation of a sideband of the subharmonic, i.e. of a pair of modes with a 
frequency ratio slightly deviating from 2:  1. The first step in identifying the 
mechanism of phase decorrelation, therefore, is to determine whether it is primarily 
a two- or a three-dimensional phenomenon. 

5.1. A two-dimensional numerical simulation 
A numerical simulation of a two-dimensional, spatially evolving mixing layer forced 
a t  a single frequency was conducted by Ho et al. (1989) to investigate the phase 
decorrelation phenomenon. The two-dimensional incompressible NavierStokes 
equations are solved on a domain that is infinite in the cross-stream direction and 
finite in the streamwise direction. The pressure term is eliminated by taking the curl 
of the momentum equations twice and retaining only the x-component of the result. 
This yields a fourth-order equation for the streamwise velocity, u, which is advanced 
in time explicitly using a compact third-order Runge-Kutta scheme (Wray 1991). 
The vertical velocity, v, is recovered directly from the continuity equation. 

The algorithm is based on a Fourier method with a cotangent mapping in the y- 
direction (so that the numerical domain 0 < 6 < 1 corresponds to the physical 
domain -co < y < co) and high-order-accurate Pad6 approximations in the x- 
direction. The first x-derivatives in the continuity equation and in the advection 
terms are approximated with modified Pad6 finite differencing (Lele 1991). The 
particular approximation used here yields sixth-order accuracy for low to moderate 
wavenumber components of the solution, and significantly smaller dispersion errors 
compared to standard differencing for high wavenumbers. The second- and fourth- 
order x-derivatives are approximated with classical fourth-order-accurate Pad6 
formulae. The algorithm contains no numerical diffusion, which is believed to be 
important for problems where the dynamics is important and which contain many 
regions of strong gradients. Furthermore, without numerical diffusion, marginal 
resolution will usually appear as high-wavenumber oscillations and is thus easily 
detected. Details and numerical analytic tests of the scheme are presented in Buell 

Like all spatially developing incompressible simulations, the present one must 
suffer from some degree of feedback between the outflow and inflow boundaries 

(1991). 
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(Buell & Huerre 1989). The convective outflow boundary condition (Buell 1991) 
passes large vortical structures fairly smoothly through the outflow boundary and 
thus minimizes the amplitude of the feedback. Forcing the inflow a t  a given 
frequency can thus easily overwhelm any feedback a t  that frequency. Given a 
sufficiently long computational domain, the remaining feedback is nearly in- 
distinguishable from low-amplitude noise at the inflow boundary. Because of this 
noise, vortices can pair in a particular simulation even though the flow is forced with 
only the fundamental frequency and not the subharmonic. The feedback and noise 
are analogous to experimental wind tunnels where the change of tunnel geometry 
downstream of the test section can create feedback effects upstream, and the inflow 
to the test section always contains a certain level of free-stream turbulence. 

For the present simulation, Re = 100, R = 0.667 and the length of the 
computational domain is 2506,. The NavierStokes equations are discretized using 
385 uniformly spaced grid points in the streamwise direction and 168 Fourier modes 
in the mapped vertical coordinate. The low Reynolds number (an order of magnitude 
smaller than in the experiments) together with the h e  grid ensure a well-resolved 
simulation. The mean inflow profile is based on the laminar self-similar solution and 
the forcing amplitude is O.Ol(U,- U,). 

The calculated velocity field is analysed in a manner similar to the experimental 
measurements. The phase jitter at  each streamwise station is determined from the 
zero crossings of the velocity traces. The standard deviations of the phase jitter are 
plotted in figure 12. The level of phase jitter increases sharply around the f i s t  vortex 
merging location from less than 0.1 to about 0.4, close to the asymptotic value of 0.38 
found in the experiments. In other words, the phase decorrelation can be reproduced 
not only qualitatively but also quantitatively by these calculations. 

Since in these two-dimensional calculations the phase decorrelation still exists, one 
can conclude that it is a two-dimensional phenomenon. Three-dimensional effects, 
such as the small-scale transition (Huang & Ho 1990) or the vortex dislocation 
(Browand & Troutt 1980), will contribute to the phase jitter but cannot be its 
primary cause. The possible two-dimensional mechanisms modifying the phase of the 
large vortices are the Eckhaus and the subharmonic instabilities. The wavelength of 
the Eckhaus instability which can effectively influence the vortices is more than one 
order of magnitude longer than the initial wavelength of the coherent structures 
(Huerre 1987). However, the phase decorrelation occurs after three coherent- 
structure wavelengths from the origin of the mixing layer. Therefore, the Eckhaus 
instability cannot generate the phase jitter observed here. Subharmonic instability 
governing the vortex merging then becomes the most probable candidate. 

5.2. Phase decorrelation and subharmonic instability 
The phase decorrelation occurs between X *  = 2.4 and 4, which is the region from the 
onset to the end of the first vortex merging (Huang & Ho 1990). The effect of vortex 
merging on the phase jitter is examined by band-pass filtering a time history of 
streamwise velocity fluctuations of a mixing layer forced at the fundamental 
frequency. The velocity trace is recorded at X* = 3.5, where the vortex merging and 
hence the phase decorrelation is in progress. The raw signals shown in figure 13(a) 
come from both the experimental and numerical data, and at this station are a 
combination of the fundamental and the subharmonic modes. The raw signal passed 
either a filter with a band centred around the fundamental frequency (figure 13b), or 
a filter with a band centred around the first subharmonic frequency (figure 13c). 
Their frequency spectra are shown in figure 14 (a-c), respectively. The total signal at 
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FIQURE 13. Time traces of streamwise velocity 

(ii) 

fluctuations at X * = 3.5. (i) Experiment; 
(ii) numerical simulation. (a) Raw signal, (bj  filtered around fo, (c) filtered around i f o .  

(ii) 

10’ 102 10” 10’ 

.f(W f (W 
FIQURE 14. Energy spectra corresponding to figure 13. 

this location (figure 13a)  is not as regular as those at X* = 1 and 2 (figure 4). On the 
other hand, the fundamental (figure 13b) has an almost constant amplitude and the 
spectral peak is sharp, in contrast with the subharmonic peak which has a wide band 
(figure 14c). It is then clear that the large phase jitter is primarily due to the 
subharmonic mode (figures 13c and 14c). 

The initial growth of the subharmonic modes is a linear process (Ho & Huerre 
1984). As the shear layer becomes thicker with streamwise distance, the amplification 
rate of the subharmonics also increases. A wide band of perturbations around the 
subharmonics is amplified from the background noise as well. Therefore, the 
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0 1 2 3 4  
7 

FIQURE 15. Forced coherent-structure histograms, fo + ijo, for R = 0.6 and Y * = 5 at various X * : 
(a) 2, ( b )  3, (c) 4, (d )  5 ,  (e) 6, (f) 7, (9) 8,  (h)  9, (i) 10, (j) 20. 0.  Experiment; -, lognormal fit 
(equation (3)). 

subharmonic modes do not have an exact phase relationship with the fundamental. 
These phase differences result in amplification rate variations (Zhang et al. 1985) and 
in different vortex evolution patterns, pairing or shredding. Consequently, the phase 
jitter increases. The rest of the amplified modes, other than the subharmonic, lead to 
variations of the vortex merging location as a function of the frequency, which add 
to the phase jitter. 

Downstream of the linear growth region the subharmonic mode receives energy 
from the fundamental via the subharmonic resonance mechanism (Kelly 1967 ; 
Monkewitz 1988). Monkewitz (1988) suggested a detuning phenomenon of the 
subharmonic waves in his weakly nonlinear analysis. The detuning produces two 
sidebands which can be seen in both the experimental and the numerical spectra 
(figure 14c). The difference between the sideband frequencies and the subharmonic 
is & O . l l f o  in the present mixing layer, R = 0.7, which is close to the predicted value 
of 0.08 for R = 1 flows. In  summary, the nonlinear effect of the sidebands along with 
the linear effect of the wide-band growth lead to the phase decorrelation. Therefore, 
one cannot inhibit phase decorrelation just by pure monochromatic forcing. 

5.3. Extent of m e  of inJluence 
When the mixing layer is forced a t  its fundamental frequency, the zone of influence 
ends around the first vortex merging, because the naturally generated subharmonic 
waves are not exactly phase locked with the forcing signal. This point can be further 
illustrated by forcing the flow at the fundamental and the first subharmonic 
frequencies with a definite phase reference. In this case, the zone of influence indeed 
increases, and the phase decorrelation occurs further downstream. Zhang et al. (1985) 
studied the response of a mixing layer forced by both the fundamental and the 
subharmonic at various phase differences, /?. They reported that the amplification 
rate of the subharmonic is maximum when the two frequencies are in phase, /? = 0, 
and minimum when out of phase, /? = n. For this reason, the fundamental and the 
subharmonic forcing frequencies in the present experiment have the same amplitude 
and zero phase shift. The histograms of the phase jitter are plotted in figure 15. 
Initially, the phase jitter is very small. Around X *  = 3, the first vortex merging 
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FIGURE 16. Streamwise evolution of the standard deviation at Y *  = 5:  ALnatural; 0 ,  forced, 
fo; 0,  forced,f,+!f,(u vs. X * ) ;  0,  forced, fo+!jfo(u vs. X). 

occurs and is indicated by the double peak in the histogram. The most interesting 
histograms are those downstream of the first vortex merging but upstream of the 
second vortex merging, X* = 4 and 5 ,  where they have a single sharp peak indicating 
little phase jitter. Here the phase decorrelation is detected around the second vortex 
merging location. The corresponding standard deviations are shown in figure 16. The 
high-level phase-locked subharmonic imposed by the forcing suppresses the phase 
jitter caused by both the linear and nonlinear effects. Therefore, the phase 
decorrelation is delayed to the amplification region of the second subharmonic, and 
the zone of influence is doubled compared with that of the flow forced at  the 
fundamental only. If the wavelength of the forced subharmonic is used as the 
normalizing lengthscale, 3 = Rx/2A0, the three curves corresponding to the natural 
flow, the flow forced at fundamental only and the flow forced at fundamental and 
first subharmonic, collapse onto a single curve. It seems that if the flow is forced at 
theMth subharmonic, the zone of influence can be increased to the region of (M+ 1)th 
vortex merging. However, the three-dimensional feature of the spanwise structures, 
e.g. the influences of dislocation and small-scale eddies, becomes strong after the 
second vortex merging region. Therefore, when the flow is forced at a low amplitude, 
it becomes increasingly difficult to extend indefinitely the zone of influence by 
perturbing the mixing layer a t  increasingly lower subharmonics. 

5.4. Stages of transition 
A laminar mixing layer originates with periodic instability waves and eventually 
reaches a fully turbulent state. The flow undergoes many stages of transitions which 
are summarized in figure 17 (Ho et al. 1988). The Kelvin-Helmholtz instability waves 
gain energy from the free stream and roll up into a spanwise vortex at X* = 2. 
Simultaneously, low-frequency perturbations also grow in this region but with a 
smaller growth rate. Just downstream, the growth rate of the subharmonic increases 
via energy transfer from the fundamental. However, the presence of the other 
unstable modes leads to phase jitter between the fundamental and the subharmonic 
mode. Therefore, if the phase between these two modes is not forced, the first vortex 
merging is not phase locked. Consequently, the phase of the merged vortices becomes 
random due to the phase decorrelation around X* = 3. The process of vortex 
merging, around X* = 4, involves intense interaction between the streamwise and 
the spanwise vortices, which triggers the production of small-scale eddies (Huang & 
Ho 1983). Thus, the small-scale transition takes place between 4 < X* < 8, 
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FIGURE 17. Sequence of transitions in a mixing layer: (a) growth of low-frequency perturbation (Ho 
et ul. 1988) ; (b )  phase decorrelation (present study) ; (c) small-scale transition (Huang & Ho 1983) ; 
(d) turbulence level of initially laminar boundary layer (Bradshaw 1966) ; (e) turbulence level of 
initially turbulent boundary layer (Bradshaw 1966) ; (f) spanwise separation for 40 % correlation 
(Browand & Troutt 1980). 

downstream of the phase decorrelation region. This provides further support that the 
sudden increase of the phase jitter is not the result of the three-dimensional random 
eddies. 

The initial boundary-layer conditions, laminar or turbulent, have long-lasting 
influences on the development of the mixing layer. Although the inertial subrange is 
well established by the second vortex merging, X * > 8, the flow has not yet reached 
the fully developed turbulent state. For flows originating with either laminar or 
turbulent conditions, both the spreading rate and the peak turbulence intensity 
approach an asymptotic state near the third vortex merging at X* = 16 (Bradshaw 
1966). Browand t Troutt (1980) measured the spatial spanwise correlation to 
characterize the two-dimensionality of the spanwise structure. Indeed, they found 
that the correlation coefficient decreases with streamwise distance and reaches an 
asymptotic value at around X* = 15. Downstream of this region, after the mixing 
layer has undergone all the transitions, the layer reaches the equilibrium state of 
fully developed turbulent flow. 

6. Conclusions 
In this study, it was found that even though the passage of the coherent structures 

originally has a well-defined frequency, the phase suddenly becomes random around 
the first vortex merging region. The phase decorrelation ends the zone of influence of 
the artificial forcing. This zone of influence, however, can be extended by forcing the 
subharmonics as well as the fundamental frequencies. The mechanism responsible for 
the phase decorrelation is the loss of the exact phase reference between the 
fundamental and the subharmonic modes during the growth of the subharmonics. 

This work is supported by a contract from the Office of Naval Research. 
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